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What is “Interactive Adaptive Learning”?

Interactive Machine Leaning [9]
“We define iML-approaches as algorithms that can interact with both
computational agents and human agents (in active learning: oracles) and can
optimize their learning behavior through these interactions.”

Adaptive Stream Mining [2]
Adaptive Stream Mining deals “with time-changing data” which require “strategies
for detecting and quantifying change, forgetting stale examples, and for model
revision”.
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What is “Interactive Adaptive Learning”?

We aim to bring different fields together...
Interaction:
Algorithms interact with both computational and human agents.
Adaptation:
The task probably changes over time and algorithms must adapt themselves.
Learning:
The agents optimize their behavior.
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What is “Interactive Adaptive Learning”? – Examples

Learning methods combining adaptive, active, semi-supervised, transfer, and
reinforcement learning techniques
Methods for big, evolving, or streaming data
Methods for filtering, forgetting, and resampling of data
Methods that detect change, outliers, frauds, or attacks
Methods for timing the interaction and for combining different types of
information of multi-modal data
Cost-aware methods and methods for estimating the impact of employing
additional resources, such as data or processing capacities, on the learning
progress,
Philiosophical, ethical, and legal questions
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Game: Separatio

Thanks to Tuan Pham Minh and Ali Ahmed
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Separatio Game

Goal: Separate male and female bugs
Init: n coins as budget
Lab: Get sex of one bug for 1 coin
Final: Sort every bug according to your
classification hypothesis
Eval: Every wrongly sorted bug costs 2
coins.
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Separatio Game

Features:
1 Antennas: yes, no
2 Color of head: blue, green, yellow
3 Color of dots: white, black
4 Number of dots: 1, . . . , 7

How to play?
1 Google Play Store: Separatio
2 Our phones

Afterwards: Highscore and evaluation
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Separatio – Evaluation

More information: Monday, 8 a.m. Machine Learning Session (Oceania IV)
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Active Learning Cycle [14]

oracle (expert)

machine learning model 
(classifier)

labeled
training set

candidate
pool

selection strategy
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Challenges of Interactive Adaptive
Learning
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Challenges of Interactive Adaptive Learning

1 Finding an appropriate selection strategy
2 Deciding when to stop – Performance estimation
3 Active Learning with multiple, error-prone information sources
4 Multi-directional communication
5 Educating the expert, changing/influencing the environment (self-fulfilling

prophecies
6 Extracting more information from humans
7 Evaluation and deployment in real-world applications
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Agenda

1 Topic 1: Selection Strategies
2 Topic 2: Mining of Changing Streams
3 Topic 3: Managing Budgets of Stream-based Active Learning
4 Topic 4: Evaluation of Pool-based Active Learning

5 Application: Sorting Robot
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Topic 1:
Selection Strategies
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Active Learning by Settles [28]

“Active learning systems attempt to overcome the labeling bottleneck by
asking queries in the form of unlabeled instances to be labeled by an oracle.
In this way, the active learner aims to achieve high accuracy using as few
labeled instances as possible, thereby minimizing the cost of obtaining
labeled data.” [28, p.5]
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Definition of Active Learning

Definition:
Active Component: ask queries to an oracle
Improve the performance of a classifier
Minimizing the cost of obtaining labeled data

Conclusion:
Active Learning optimizes a performance which is induced by a classifier
through selecting the most beneficial unlabeled instances to be labeled by
an oracle to build the training basis.
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Visualization

What factors influence the decision?
Density (improve the classifier, where
decisions are important)
Decision boundary (be specific, where
change is expected)
Label density (explore unexplored regions)
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Influence Factors:

Decision boundary: main criterion for decision making (prediction)
Proxy: posterior probability, margin, etc.

Reliability of decision: identifies how sure one can be that the decision is
already correct

Proxy: classifier ensemble diversity, labels distribution

Influence: the influence of one instance for the complete dataset
Proxy: density, simulation

Class distribution: are classes equally often represented
Proxy: class prior
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Random Sampling

Also called passive sampling
Selects instances randomly for labeling
Competitive approach
Standard baseline
Free of heuristics
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Uncertainty Sampling [3]
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Feature x1

Idea
Select those instances where we are least
certain about the label

Approach:
3 labels preselected
Linear classifier
Use distance to the decision boundary as
uncertainty measure
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Discussion of Uncertainty Sampling

⊕ easy to implement
⊕ fast

	 no exploration (often combined with random sampling)
	 impact not considered (density weighted extensions exist)
	 problem with complex structures (performance can be even worse than

random)

Influence factors: Decision boundary
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Ensemble-Based Strategy [30]
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Feature x1

        Classifier 1
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    Disagreement

Idea
Use disagreement between base classifiers

Approach
1 Get an initial set of labels

2 Split that set into (overlapping) subsets

3 On each subset, train a different base-classifier

4 Repeat until stop

5 On each unlabeled instance do

6 Apply all base-classifiers

7 Request label, if base-classifiers disagree

8 Update all base-classifiers

9 Go to step 4
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Discussion of QbC

⊕ applicable to every classifier (even discriminative ones)

	 need more labels as some are hidden for some classifiers
	 training of multiple classifiers

Influence factors: Decision boundary, Reliability of decision
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Expected Error Reduction [25]

Simulates the acquisition of each label candidate and each possible outcome
(class)
Calculates the generalization error of the simulated new model
Chooses the label with lowest generalization error

x∗ = argminx
∑

i∈{1,...,C}
Pθ(yi | x)

(∑
x ′∈U

1− Pθ+(x,yi )(ŷ | x ′)

)
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Discussion of Expected Error Reduction

⊕ decision theoretic model

	 long execution time (closed form solutions for specific classifiers,
approximations for speed up)

Influence factors: Decision boundary, Reliability of decision, Impact
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Probabilistic Active Learning [19]
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Models the true posterior as being
Beta-distributed

variance of posterior is correlated with
the number of local observations
thereby omit the complex simulation of
expected error reduction

Calculates the performance
improvement of the model
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Discussion of Probabilistic Active Learning

⊕ decision theoretic model
⊕ fast w.r.t. expected error reduction

	 local number of labels required

Influence factors: Decision boundary, Reliability of decision, Impact
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DUAL [5]
combination of density weighted uncertainty sampling and standard (uniform)
uncertainty sampling
adaptive weights

Influence factors: Decision boundary, Impact

4DS [24]
Uses four different scores for a classifier based on Gaussian mixtures (CMM):

distance, density, diversity, distribution
automatically weighted

Influence factors: Decision boundary, Class distribution, Impact, (Reliability of
decision)
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One-by-one vs. Batch Acquisition

Definition:
One-by-one: subsequently selecting instances
Batch: selects a specific number of labeling candidates for labeling at one
time

Batch-Acquisition:
Problem: most approaches would select very similar instances
Approach: diversity score
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Summary

Uncertainty Sampling:
selects instances near the decision boundary

Query by Committee:
minimizes classifier variance

Expected Error Reduction:
simulates acquisition of each candidate and each possible outcome

Probabilistic Active Learning:
calculates expected performance locally

... (there exist many methods)
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Topic 2:
Mining of Changing Streams

Thanks to Georg Krempl and Vincent Lemaire
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Motivation for Adaptive Interactive Stream Mining

Finance: High frequency trading
Find correlations between the prices of stocks within the historical data
Evaluate the stationarity of these correlations over the time
Give more weight to recent data

Banking : Detection of frauds with credit cards
Automatically monitor a large amount of transactions
Detects patterns of events that indicate a likelihood of fraud
Stop the processing and send an alert for a human adjudication

Medicine: Health monitoring
Perform automatic medical analysis to reduce workload on nurses, . . .
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Stream (Online) and Static (Offline) Learning

Big Data
Static data
Storage : distributed on several computers
Query & Analysis : distributed and parallel processing
Specific tools : Very Large Database (ex : Hadoop)

Fast Data
Data in motion
Storage: none (only buffer in memory)
Query & Analysis: processing on the fly (and parallel)
Specific Tools: CEP (Complex Event Processing)
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Stream (Online) and Static (Offline) Learning

Issues in Timing and Availability of Supervision
Feedback/Interaction might be limited
e.g. costly labels due to limited time of domain expert
Feedback is often delayed
e.g. result of an experiment/investigation, or payment of a loan
Even in applications with big/fast (e.g., unlabelled) data,
some (e.g., labelled) data might be sparse/delayed!

Distinction: Online Learning vs. Online Deployment
Appropriateness depends on the practical application
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Stream (Online) and Static (Offline) Learning

Particularities of Stream Classification
Instances are received in subsets (one-by-one or in chunks)
Instances might be discarded after being processed
A hypothesis is produced after each instance is processed
i.e. the system produces a series of hypotheses

No distinct phases for learning and operation
i.e. produced hypotheses can be used in classification

Operates (often) as a real time system
Constraints: time, memory, . . .

i. i. d. assumption does not hold!
Neither prediction nor learning ever stops
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Adaptive Stream Classification: Implementation
Adaptive Stream Classification: Implementation

93 

Online 

Classifier X

Y

Ŷ

Update 

Evaluation 

Perf 

Time 

In practice, this input 

stream may be delayed 

A on-line classifier predicts the class label of tuples before receiving the true label …  

Implementation of on-line classifiers 

11/70 Interactive Adaptive Learning
Knowledge
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Management &
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Adaptive Stream Classification Application Example

Online Advertising Targeting
Adaptive Stream Classification Application Example:
Online Advertising Targeting
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Implementation of on-line classifiers 
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Adaptive Stream Classification: Summarizing the Main Challenges 1

Volume and Velocity:
processing high volumes of data in limited time
no inital data, but possibly infinite (unknown) length of stream

Volatility:
dynamic environment with ever-changing patterns
old data might become useless or even misleading due to change

1See e.g., [6, 20, 7]. 37
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Types of Change – Change might affect

the target, e.g. the variable Y changes
the available features X , e.g. new are added or old ones removed
the distributions, so called concept (or population) drift or shift [27, 12, 22]

Types of Change

Change might affect

I the target, e.g. the variable Y changes

I the available features X , e.g. new are added or old ones removed

I the distributions, so called concept (or population) drift or shift
[Schlimmer and Granger, 1986, Kelly et al., 1999,
Quiñonero-Candela et al., 2009]

Original distribution
P(X ,Y )

Real Concept Drift:
P(Y |X ) has changed

Virtual Concept Drift:
P(Y |X ) is static

1Illustrations: [Žliobaitė et al., 2016]

15/70 Interactive Adaptive Learning
Knowledge

Discovery
Management &

1Illustrations: [41] 38
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Types of Drift

By the affected distributions: E.g. P(X ,Y ), P(X ), P(Y ), P(Y |X ), P(X |Y )

Smoothness of concept transition: sudden shift vs. gradual drift
Singular or recurring contexts: with recurring context, obsolete data and
models gain relevance again
Systematic or unsystematic: E.g. distributions change according to patterns
Real or virtual: change affects the decision boundary or solely the feature
distribution (or noise)

Types of Drift

Categorizing Drift2

I By the affected distributions:
E.g. P(X ,Y ), P(X ), P(Y ), P(Y |X ), P(X |Y )

I Smoothness of concept transition:
sudden shift vs. gradual drift

I Singular or recurring contexts:
with recurring context, obsolete data and models gain relevance again

I Systematic or unsystematic:
E.g. distributions change according to patterns

I Real or virtual:
change affects the decision boundary or solely the feature distribution (or noise)

time

da
ta

m
ea

n

sudden/abrupt incremental gradual reoccuring concepts outlier (not concept drift)

2See e.g., [Zliobaitė, 2009, Hofer and Krempl, 2013, Krempl et al., 2014, Webb et al., 2017].
2Illustration from [Žliobaitė et al., 2016]

16/70 Interactive Adaptive Learning
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1See e.g., [38, 8, 20, 33].
1Illustration from [41] 39
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Exemplary Technique

Hoeffding Trees

40
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Very Fast Decision Trees

Problem
Massive amount of data
Considering every instance for every node ?

Basic Idea
Very Fast Decision Tree (VFDT), suggested by Domingos and Hulten in 2000 [4]:

Calculate quality measure for each attribute (e.g. entropy)
Decide with Hoeffding bound if enough data exists to select split attribute
If enough data exists, add split to tree and create subnodes, start learning at
each subnode;
Otherwise wait for more data
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Hoeffding Bound

Also denoted as additive Chernoff bound (Hoeffding, 1963)
Given:

Real-valued random-variable r with range R, arbitrarily distributed
User specified confidence 1− δ
True mean r̄0 of r is unobservable,
but sample mean r̄ can be calculated

After n independent observations of R, test whether

r̄0 ≥ r̄ − ε

with

ε =

√
R2 log(1/δ)

2n

42
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Very Fast Decision Trees – Basic Idea (cont’d)

Very Fast Decision Tree (VFDT), suggested by Domingos and Hulten in 2000 [4]:
Calculate quality measure for each attribute (e.g. entropy)
Decide with Hoeffding bound if enough data exists to select split attribute
If enough data exists, add split to tree and create subnodes, start learning at
each subnode; Otherwise wait for more data

Let Xa and Xb the first and second best attributes (w.r.t. a heuristic measure)
Let Ḡ (Xi ) be the heuristic measure to chose split attributes,
such that the bigger Ḡ , the better (e.g. information gain)
Apply Hoeffding bound to

∆Ḡ = Ḡ (Xa)− Ḡ (Xb)

If ∆Ḡ > ε, we are confident that difference between Xa and Xb is larger zero
Thus, choose Xa for split

43



Daniel Kottke

Very Fast Decision Trees – Some remarks

Instance is passed to a leaf,
and used only for deciding upon additional split there
Only counts are kept and updated
Time complexity of processing a new instance is O(ldvc) with
l maximum tree depth, d number of attributes,
v max. number of values per attribute, c number of classes

The time needed to process a new instance does not depend on the number
of previously seen instances
A single-pass algorithm, usable on fast streams!
Considers all observations, no forgetting!
If concept changes, many more instances of a new concept are needed to
outweight instances of old concept(s)
Only applicable on streams with static concepts, not on drifting
concepts!
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Concept-Adapting Very Fast Decision Trees

Background
Include forgetting, avoid multiple passes over data
Concept-adapting VFDT: Hulten, Spencer, and Domingos 2001 [10]

45
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Concept-Adapting Very Fast Decision Trees

Basic Idea
Recompute quality measures at every node (every fixed number of new
observations) within a window
If another split attribute yields similar performance, learn alternative subtree
for this split attribute. Thus, we have a set of alternative subtrees for every
node (least promising ones are dismissed if memory is getting low)
If accuracy of a new subtree is significantly lower than existing one, dismiss
the alternate subtree
If accuracy of new subtree is significantly higher, exchange subtrees

Note: Alternate subtrees are learnt with new instances only, thus replacement
of old subtree yields forgetting
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Adaptive Stream Learner

47
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Categorization of Adaptive Stream Classifier Technologies2

Memory
Forgetting Mechanism

Abrupt Forgetting: instances are either inside or outside the training window,
based on their age or their order [1]
Sampling: instances are selected according to some probability
E.g. Reservoir Sampling [32]
Gradual Forgetting: instances’ weights decrease with their age (full memory
approach!)
E.g. linear [16], exponential [13]

2See e.g., [7] (partially). 48
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Categorization of Adaptive Stream Classifier Technologies3

Learning
Learning Mode

Incremental (by updating an existing model, CVFDT [10] )
Retraining (a new model from scratch, requires more buffered data)

Adaptation Methods
Blind (without explicit change detection) vs. Informed
(adaptation is triggered by e.g. a change detector like in CVFDT or by
recognizing a context like in [34])

Global vs. Local Replacement (i.e. the whole model is replaced, or only parts of
it)

Single Model vs. Ensemble

3See e.g., [7] (partially). 49
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Common Assumption:

Information (features, labels) on each instance is
correct (i.e. reliable),
complete (i.e. true labels and features finally known),
immediately available (i.e. before the next instance must be processed)
available at no cost and without control by the classifier on label selection.

50
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Summary and Concluding Remarks

Summary
Data Stream Challenges:

Volume and Velocity: low time & space complexity required
Volatility: change, e.g. concept drift that requires adaptation

Variety of approaches, categorized by
data management and forgetting mechanisms (e.g. sliding windows)
learning mode (e.g. incremental) and adaptation methods (e.g. actively upon
change detection)

Applications often present data in multiple streams:
e.g. features and labels arrive at different times
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Summary and Concluding Remarks

(Some) Open Challenges
Imbalanced Classes
Sparse Labels: Semi-Supervised Learning
Costly Labels: Active Learning
Delayed Labels: Temporal Transfer Learning

Literature Surveys
Overview & Taxonomy of Techniques: [7]
Open Challenges: [20]
Applications: [41]
Ensembles: [17]
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Topic 3:
Managing Budgets of Stream-based

Active Learning
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Introduction
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Introduction
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Introduction
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Challenges in
Stream Active Learning
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Challenges of Stream Active Learning

Pool Active Learning
Where to buy instances (spatial usefulness)?

Balance Exploration and Exploitation in the dataspace

Stream Active Learning
Where to buy labels (spatial usefulness)?
Consider Drift

Labels might change over time and have to be validated
Lifetime of labels

When to buy labels (temporal usefulness)?
Balance Exploration and Exploitation in time
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Spatial Usefulness

Where to buy labels?
Use scores from pool-based methods like

Uncertainty sampling [11, 31, 35, 40]
Query by committee [26, 37]
Probabilistic active learning [15]

Approach
Find best instances spatially (based on feature vectors) balancing:

exploration (observe unsampled regions)
exploitation (acquire labels in regions near decision boundaries to elaborate
the decision)
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Consider Drift

Motivation
Labels might change over time and have to be validated

Drift can affect any region of
feature space [39]

Image from [39], Figure 6, page 605.

58



Daniel Kottke

Budget in Streams

Pools: absolute number (e.g. stop after 40 labels)
Streams: relative definition necessary (e.g. buy 10%)

How to distribute the budget over time?
constantly (every 10th label→ no spatial selection necessary)
almost constantly (with a small tolerance window) [15]
bounded (budget should not exceed 10%) [40]
dynamic (budget changes over time)
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Temporal usefulness (When to buy?)
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Temporal usefulness (When to buy labels?)

Labels in the beginning are more beneficial as they affect more future
decisions (resp. after changes)
But: one does not know when change take place
Standard technique: constant budget

Exploration vs. Exploitation
Exploration: Sample randomly to be able to detect change
Exploitation: Sample the most promising labels
How to cope with gradual drifts?
High budgets after change might cause problems due to less spatial
usefulness
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Example: Self Lock-In Problem (for US)

Motivation
Why not simply apply
active learning strategies
from static (iid) streams?

Example:
Uncertainty sampling,
drifting distributions

Error is never even noticed!

Active learner (self) lock-in
on an outdated hypothesis

Caveat:
Drift can occur anywhere in the
feature space, as noted by [40]

Remedy: Sampling from the
whole feature space.

X

ModelReality
fest(y,x)ftrue(y,x)

+

−
X

ModelReality
fest(y,x)ftrue(y,x)

+

−

X
ModelReality
fest(y,x)ftrue(y,x)

+

−

Time 0 Time 1 Time 2

Error
is never
noticed!

62



Daniel Kottke

Temporal Usefulness
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Batch/Chunk-Based Processing [11, 18]

Define chunk size w :
1 Collect w instances from the stream into a chunk
2 Select instances with pool active learning according to budget
3 Train Classifier
4 Repeat

Discussion
⊕ Easy to understand/implement
	 Delays training to the end of the batch
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One-by-one Processing [15]

Determines usefulness of one instance when it arrives
Threshold balances acquisition
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One-by-one Processing [15, 40]

Determines usefulness of one instance when it arrives
Threshold balances acquisition

Discussion
⊕ Training can be processed immediately
	 Needs additional budgeting component

to chunk
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Temporal Usefulness

Zliobaite et al. [40]
Spatial selection: uncertainty sampling (exploitation) with random sampling
(exploration)
Temporal selection: adaptive threshold (ensures that budget is not exceeded)

Kottke et al. [15]
Spatial selection: Probabilistic active learning
Temporal selection: balanced incremental quantile filter (BIQF) (ensures that
budget is within a given tolerance window)
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Adaptive Threshold [40]

init θ = 1, s ∈ (0, 1]

1 if budget not exceeded (approx.):
2 if P(y∗ | x) < θ:
3 θ ← θ(1− s)

4 get label
5 else:
6 θ ← θ(1 + s)

7 do not get label
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Incremental Quantile Filter [15]
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Balancing [15]

Tolerance window (wtol): maximal difference of acquisitions between current
and the target budget
Idea: If there are label acquisitions left decrease threshold θ (and vice versa)

θbal = θ −∆ · acqleftwtol

θ - original threshold
θbal - balanced threshold
∆ - Data range of IQF window
wtol - Tolerance window size
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Discussion
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Topic 4:
Evaluation of Pool-based

Active Learning
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Motivation4

The evaluation methodology should be
1 reliable

robust to varying seeds or shuffling data
reproducible (well-described, availability of data)

2 realistic
valid assumptions for real applications

3 comparable
development of a standardized active learning evaluation gold standard to
compare algorithms without reimplementing

4Based on [14] 73
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Recap: Active Learning Cycle [28]

oracle (expert)

machine learning model 
(classifier)

labeled
training set

candidate
pool

selection strategy
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A Different View on the Active Learning Cycle

oracle (expert) machine learning model 
selection strategy

labeled
training setcandidate pool evaluation settuning set

initiali-
zation set

selection strategy

We want to evaluate the performance of the selection strategy.
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Reliable evaluation
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Evaluating the Model’s Performance

oracle (expert) machine learning model 
selection strategy

labeled
training setcandidate pool evaluation settuning set

initiali-
zation set

training set is subsequently filled with selected candidates
the learned model is evaluated on a hold-out evaluation set
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Which performance measure should be used?

depends on the application
balanced class priors (e.g., accuracy, error)
unbalanced class priors (e.g., f1-score, AUROC)

complexity [21]:
point measures (e.g., accuracy, precision, recall)
integrated measures (e.g., AUROC, H-Measure)
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How to interpret the results of a learning curve?

converging as fast as possible
converging to the highest overall value

p
e
rf

o
rm

a
n
ce

number of labels

p
e
rf

o
rm

a
n
ce

number of labels

79



Daniel Kottke

How to summarize results from a learning curve?

Table at specific time points (early, mid, late)
Area under the learning curve, mean (depends on stopping point)
deficiency [36]
data utilization rate [23]
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How to evaluate statistical significance?

Which values to compare?
not across label acquisitions (highly correlated) but across multiple repetitions
at which point in time?

Statistical tests
t-Test cmp. mean (assumes that mean is normal distributed)
Wilcoxon Signed Rank Test cmp. tendency (parameter-free test)

always present results with statistical significance and
effect size
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How many repetitions are required?

Comparison of algorithms using 5-fold cross validation
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Initialization of Instance Selection

oracle (expert) machine learning model 
selection strategy

labeled
training setcandidate pool evaluation settuning set

initiali-
zation set

Cannot be class-specific, as labels are unknown
Often random (How to tune the number of random samples?)
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Parameter Tuning

oracle (expert) machine learning model 
selection strategy

labeled
training setcandidate pool evaluation settuning set

initiali-
zation set

1 Determine hyperparameter and fix them across selection methods
2 How to tune without labels?
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Parameter Tuning

tuning instances should be considered in the number of acquisitions
how many instances should be used for tuning? (many classifiers are
sensitive to the number of instances)
normally, no instances for supervised parameter tuning available
tuning parallel to sampling may be complicated
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Realistic evaluation
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Real applications oft are more challenging

Often highly specialized (hard to transfer approaches to related domains)
Imperfect labelers (experts might be wrong)
In real-world only one shot (mean results are not representative)
Labels are not always available (in time and space)
Performance guarantees (cmp. random sampling)
Assess online performance of an actively trained classifier
Different costs for different annotations or classes
Ground truth might not be available
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Comparable evaluation
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Discussion on an Evaluation Gold Standard

Use exactly the same robust classifier for every AL method when comparing
and try to sync the parameters of these classifiers.
Capture the effect of different AL methods on multiple datasets using at least
50 repetitions.
Start with an initially unlabeled set. If you need initial training instances,
sample randomly and explain when to stop.
Use either a clear defined stopping criterion or enough label acquisitions
(sample until convergence).
Show learning curves (incl. quartiles) with reasonable performance measures.
Present pairwise differences in terms of significance and effect size (Wilcoxon
signed rank test).
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Application:
Sorting Robot
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Application: Sorting Robot

https://youtu.be/TMd4VBBuTt0
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Thanks

Adrian Calma (University Kassel) – co-organization
Robi Polikar (Rowan University) – co-organization
Georg Krempl (University Utrecht) – slides
Vincent Lemaire (Orange Labs) – slides
Tuan Pham Minh (University Kassel) – bug app
Ali Ahmed (University Kassel) – bug app
Marek Herde (University Kassel) – bug app
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Workshop on IAL @ ECMLPKDD (Dublin)

  

2nd International Workshop on

INTERACTIVE ADAPTIVE LEARNING 
(IAL2018)

Co-Located With The European Conference on Machine Learning and 
Principles and Practice of Knowledge Discovery (ECML PKDD 2018)

10 September 2018 - Dublin (Ireland)

Submission: 2 July 2018 (full papers)
                           23 July 2018 (extended abstracts)

Website:         www.uni-kassel.de/go/ial2018
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Learning under concept drift: an overview.
Technical report, Vilnius University, 2009.
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